https://cosmosmagazine.com/physics/p...ter-simulation
So, we don't live in "the matrix" after all. May that idea
Quantum Monte Carlo methods use random sampling to analyse many-body quantum problems where the equations involved cannot be solved directly.
Ringel and Kovrizhi showed that attempts to use quantum Monte Carlo to model systems exhibiting anomalies, such as the quantum Hall effect, will always become unworkable.
They discovered that the complexity of the simulation increased exponentially with the number of particles being simulated.
If the complexity grew linearly with the number of particles being simulated, then doubling the number of partices would mean doubling the computing power required. If, however, the complexity grows on an exponential scale – where the amount of computing power has to double every time a single particle is added – then the task quickly becomes impossible.
Ringel and Kovrizhi showed that attempts to use quantum Monte Carlo to model systems exhibiting anomalies, such as the quantum Hall effect, will always become unworkable.
They discovered that the complexity of the simulation increased exponentially with the number of particles being simulated.
If the complexity grew linearly with the number of particles being simulated, then doubling the number of partices would mean doubling the computing power required. If, however, the complexity grows on an exponential scale – where the amount of computing power has to double every time a single particle is added – then the task quickly becomes impossible.
Comment