http://www.sciencedaily.com/releases...0708122609.htm
ScienceDaily (July 8, 2010) — Scientists have discovered a compound that restores the capacity to form new memories in aging rats...
...
"It takes a long time -- two to four weeks -- from the birth of a new neuron until it becomes functional," McKnight said. "Most of them die along the way." P7C3 essentially seems to give newborn neurons better odds.
Notably, they say that two other drugs (Dimebon and Serono compounds) -- both of which bear structural similarities to P7C3 -also encourage the growth of new neurons. It's tempting to think that all three compounds work in the same way.
The researchers pinpointed a derivative of P7C3, called A20, which is even more protective than the parent compound. They also produced evidence suggesting that two other neuroprotective compounds eyed as possible Alzheimer's cures may work through the same mechanism as P7C3. The A20 derivative proved 300 times more potent than one of these compounds currently in clinical trials for Alzheimer's disease. This suggested that even more potent neuroprotective agents could potentially be discovered using the same methods. Following up on these leads, the researchers are now searching for the molecular target of P7C3 -- key to discovering the underlying neuroprotective mechanism.
...
"It takes a long time -- two to four weeks -- from the birth of a new neuron until it becomes functional," McKnight said. "Most of them die along the way." P7C3 essentially seems to give newborn neurons better odds.
Notably, they say that two other drugs (Dimebon and Serono compounds) -- both of which bear structural similarities to P7C3 -also encourage the growth of new neurons. It's tempting to think that all three compounds work in the same way.
The researchers pinpointed a derivative of P7C3, called A20, which is even more protective than the parent compound. They also produced evidence suggesting that two other neuroprotective compounds eyed as possible Alzheimer's cures may work through the same mechanism as P7C3. The A20 derivative proved 300 times more potent than one of these compounds currently in clinical trials for Alzheimer's disease. This suggested that even more potent neuroprotective agents could potentially be discovered using the same methods. Following up on these leads, the researchers are now searching for the molecular target of P7C3 -- key to discovering the underlying neuroprotective mechanism.
Comment